LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
M.Sc. DEGREE EXAMINATION - PHYSICS	
FIRST SEMESTER – APRIL 2013	
PH 1812 - ELECTRODYNAMICS	
Date : 27/04/2013 Dept. No. Max. : 100 Marks Time : 9:00 - 12:00 Max. : 100 Marks Max. : 100 Marks	
SECTION -A	
Answer all the questions: $10 \ge 20$	
1. Electrostatic energy does not obey superposition principle. Explain.	
2. What is the relation between dielectric constant and susceptibility for a linear dielectric?	
3. Use Ampere's law to find the magnetic potential at any point due to an infinitely long straight conductor.	
4. Distinguish between dia, para and ferro magnetic materials.	
5. Explain the term 'displacement current'.	
6. What is a gauge transformation? Give an example.	
7. Write down the boundary condition on E across an interface between two dielectric media.	
8. Define skin depth.	
9. Explain the term 'retarded potentials'.	
10. What do you mean by velocity and acceleration fields?	
SECTION -B	
Answer any four questions: $4 \times 7.5 = 30$	
11. The electric potential of some configuration is given by the expression $V(\mathbf{r}) = A\left(\frac{e^{-\lambda r}}{r}\right)$ where A and λ	
are constants. Find the electric field $\mathbf{E}(\mathbf{r})$, the charge density $\rho(\mathbf{r})$ and the total charge Q.	
12. Evaluate $\nabla \times \vec{B}$ for a general volume current distribution with current density \vec{J} .	
13. Obtain Maxwell's equations in matter.	
14. Explain the phenomena of reflection at a conducting surface using suitable boundary conditions on the Maxwell's equations.	
15. Obtain Leinard-Wiechert potentials for a moving point charge.	

SECTION -C	
50.	

- 18. State and prove Poynting's theorem.
- 19. Derive an expression for complex dielectric constant and hence explain the phenomena of anomalous dispersion. Establish Cauchy's formula relating the coefficient of refraction and coefficient of dispersion.
- 20. Assuming Lienard-Weichert potentials, calculate the electric and magnetic fields of a moving point charge.
